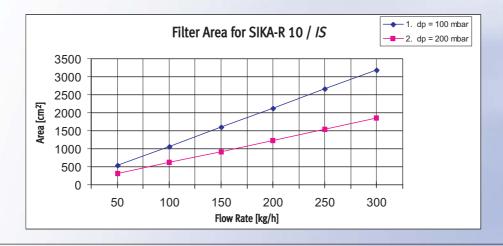


GKN SIKA-IS STEAM FILTER


Filter for super heated steam

Advantages:

- 100 % seam less construction no welding seams on porous body
- · corrosion resistant
- · easy retrofit of existing ceramic filter
- long life time
- high flow rates
- · extremely high collapse pressure
- submicron pore sizes available
- wide range of alloys available
- customized fittings available
- standard filter design

Please note, that crossing the dew point will change the "gas" into liquid!!

GKN Sinter Metals Filters GmbHDahlienstrasse 43
D 42477 Radevormwald

Germany

Phone: +49 (0) 2195 609 0 Fax: +49 (0) 2195 60949 E-Mail: info@gkn-filters.com www.gkn-filters.com

Materials and products

Material	Name	MatNo.	SIKA-					Fe	Cr	Ni	C	Mo	Miscellany	Max. Tem	perature °C	(eyword
				R	,	FIL	В		1	in weight-	%	1		Reducing	Oxidizing	
			IS	AX	AS											
High alloyed material	AISI 304 L	1.4306	Х	х	х			Bal.	18.0-20.0	8.0-12.0	<=0.03	0.5	N<=0.1	600	500	Standard for food application
	AISI 316 L	1.4404	Х	Х	Х			Bal.	16.0-18.0	10.0-14.0	<=0.03	2.0-3.0	N<=0.1	540	400	
						х								380	320	
	AISI 904 L	1.4539	Х	х	х			Bal.	19.0-21.0	24.0-26.0	<=0.02	4.0-5.0	N<=0.15 Cu 1.2-2.0	600		Resistant against sulphuric acid, phosphoric and hydrochloric acid
	AISI 310	1.4841	Х			х		Bal.	24.0-26.0	19.0-22.0	<=0.25	-		800	600	Heat resistant
	FeCrAl	1.4767 Mod.				х		Bal.	19.0-22.0	-	<0.10	-	Al 5.0-6.5 with rare earth elements	unfit	1000	
Nickel based alloys*	Hastelloy C 22	2.4602	Х					2.0-6.0	20.0-22.5	Bal.	<0.02	12.0-14.5	W 2.0-3.5, Co 2.5	650	650	Corrosion resistant with various agressive media. Duration appli-
	Hastelloy C 276	2.4819	Х	х				4.0-7.0	14.0-16.0	Bal.	<0.02	15.0-17.0	W 3.0-4.5	650	650	
	Hastelloy X	2.4665	Х	х				17.0-20.0	20.5-23.0	Bal.	<0.15	8.0-10.0	Co 0.5-2.5 W 0.2-1.0	930	800	cation at > 400 °C possible
	Inconel 600	2.4816	Х	х	Х			6.0-10.0	14.0-17.0	>=72.0	<0.15	-	-	700	600	
	Inconel 625	2.4856	Х		Х			<=5.00	20.0-23.0	>=58.0	<0.10	8.0-10.0	Nb 3.15-4.15	650	650	
	Monel 400	2.4360	Х	х	х			<2.0	-	>=63.0	<0.30	-	Cu 28.0-34.0	500		Resistant against Cl-containing media
Bronze	CuSn 11	2.1052					Х	-	-	-	-	-	-	300	250	Typically used for hydraulic & pneumatic
Tran- ium**	Ti	-	Х	Х				-	-	-	-	-	Ti > 99 %	500	500	Medicine, acid, electrolysis
Other	Other materials	cher materials on request													•	

^{*} Nickel based AX-products only after consultation. Not all dimensions feasible. **Not all raw materials are in stock.

Typical Iron or Nickel elements e.g. Si, Mn, P, S according to the literature.

SIKA-R...*IS*

- Made of sintered metal powder (a variety of alloys are used, depending on requirement)
- Filter grades from 0.5 200 µm
- Suitable for use up to 950 °C
- Seamless up to 1500 mm in length and up to 300 mm in diameter

SIKA-FIL

- Stainless steel fibers
- 60 90 % porosity
- Filter grades from 1 100 μm
- Used mainly in gas filtration with high gas velocities

SIKA-R...AX

- Axial pressed filters made of metal powder (A variety of alloys are used, depending upon requirement)
- Filter grades between 0.5 and 200 μm
- Used mainly in gas and liquid filtration

SIKA-R...*B*

- Gravity sintered filters made of bronze
- \bullet Filter grades between 8 and 200 μm
- Used mainly in pneumatic hydraulic application and polymer filtration
- · Best for shapes

SIKA...AS

- Asymmetric designed powder / powder composite, consisting of a support and a thin filter active layer of the SAME alloy
- Used in catalyst recovery and cross flow application

SIKA- Modules

- Customer designed elements with fitting
- Used mainly for sensor protection and flow resistors
- Welding constructions

