

GKN SIKA INSTALLATION ADVICE

Installation of SIKA-FIL gas filter

Venturi nozzle for improving the back pulse

Compressing sheet with venturi to "clamp" the filter to the tube sheet

Solid flange, welded to the solid inlay filter

Gasket (grove in tube sheet for application > 200 °C)

Tube sheet – to be connected to the vessel

SIKA-FIL filter element

GKN Sinter Metals Filters GmbHDahlienstrasse 43
D 42477 Radevormwald
Germany

Phone: +49 (0) 2195 609 0 Fax: +49 (0) 2195 60949 E-Mail: info@gkn-filters.com www.gkn-filters.com

Materials and products

Material	Name	MatNo.	SIKA-					Fe	Cr	Ni	C	Mo	Miscellany Max. 1		perature °C	Keyword
				R	,	FIL	В		1	in weight-	%	1		Reducing	Oxidizing	
			IS	AX	AS											
High alloyed material	AISI 304 L	1.4306	Х	Х	Х			Bal.	18.0-20.0	8.0-12.0	<=0.03	0.5	N<=0.1	600	500	Standard for food application
	AISI 316 L	1.4404	Х	Х	Х			Bal.	16.0-18.0	10.0-14.0	<=0.03	2.0-3.0	N<=0.1	540	400	
						Х								380	320	
	AISI 904 L	1.4539	х	х	х			Bal.	19.0-21.0	24.0-26.0	<=0.02	4.0-5.0	N<=0.15	600	500	Resistant against sulphuric acid,
													Cu 1.2-2.0			phosphoric and hydrochloric acid
	AISI 310	1.4841	Х			х		Bal.	24.0-26.0	19.0-22.0	<=0.25	-	-	800	600	Heat resistant
	FeCrAl	1.4767				х		Bal.	19.0-22.0	-	<0.10	-	Al 5.0-6.5	unfit	1000	
		Mod.											with rare earth			
													elements			
Nickel based alloys*	Hastelloy C 22	2.4602	Х					2.0-6.0	20.0-22.5	Bal.	<0.02	12.0-14.5	W 2.0-3.5, Co 2.5	650	650	Corrosion resistant with various
	Hastelloy C 276	2.4819	Х	Х				4.0-7.0	14.0-16.0	Bal.	<0.02	15.0-17.0	W 3.0-4.5	650	650	agressive media. Duration appli-
	Hastelloy X	2.4665	Х	Х				17.0-20.0	20.5-23.0	Bal.	<0.15	8.0-10.0	Co 0.5-2.5	930	800	cation at > 400 °C possible
													W 0.2-1.0			
	Inconel 600	2.4816	Х	Х	Х			6.0-10.0	14.0-17.0	>=72.0	<0.15	-	-	700	600	
	Inconel 625	2.4856	Х		Х			<=5.00	20.0-23.0	>=58.0	<0.10	8.0-10.0	Nb 3.15-4.15	650	650	
	Monel 400	2.4360	Х	Х	Х			<2.0	-	>=63.0	<0.30	-	Cu 28.0-34.0	500	500	Resistant against Cl-containing
																media
Bronze	CuSn 11	2.1052					Х	-	-	-	-	-	-	300	250	Typically used for hydraulic &
																pneumatic
Titan- ium**	Ti	-	Х	Х				-	-	-	-	-	Ti > 99 %	500	500	Medicine, acid, electrolysis
Other	Other materials	on reques	t													
5																

^{*} Nickel based AX-products only after consultation. Not all dimensions feasible. **Not all raw materials are in stock.

Typical Iron or Nickel elements e.g. Si, Mn, P, S according to the literature.

SIKA-R...*IS*

- Made of sintered metal powder (a variety of alloys are used, depending on requirement)
- Filter grades from 0.5 200 µm
- Suitable for use up to 950 °C
- Seamless up to 1500 mm in length and up to 300 mm in diameter

SIKA-FIL

- Stainless steel fibers
- 60 90 % porosity
- Filter grades from 1 100 μm
- Used mainly in gas filtration with high gas velocities

SIKA-R...*AX*

- Axial pressed filters made of metal powder (A variety of alloys are used, depending upon requirement)
- Filter grades between 0.5 and 200 μm
- Used mainly in gas and liquid filtration

SIKA-R...*B*

- Gravity sintered filters made of bronze
- \bullet Filter grades between 8 and 200 μm
- Used mainly in pneumatic hydraulic application and polymer filtration
- · Best for shapes

SIKA...AS

- Asymmetric designed powder / powder composite, consisting of a support and a thin filter active layer of the SAME alloy
- Used in catalyst recovery and cross flow application

SIKA- Modules

- Customer designed elements with fitting
- Used mainly for sensor protection and flow resistors
- Welding constructions

